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Overstable hydromagnetic convection in 
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The effect of the simultaneous action of a uniform magnetic field and a uniform 
angular velocity on the linear stability of the BBnard layer to time-dependent 
convective motions is examined in the Boussinesq approximation. Four models, 
characterized by the relative directions of the magnetic field, angular velocity 
and gravitational force, are discussed under a variety of boundary conditions. 
Apart from a few cases, the treatment applies when the Taylor number T and 
the Chandrasekhar number Q (the square of the Hartmann number) are large. 
(These parameters are dimensionless measures of angular velocity and magnetic 
field, respectively.) 

It is shown that the motions at the onset of instability can be of three types. 
If the Coriolis forces dominate the Lorentz forces, the results for the rotating 
non-magnetic case are retained to leading order. If the Coriolis and Lorentz 
forces are comparable, the minimum temperature gradient required for insta- 
bility is greatly reduced. Also, in this case, the motions that ensue a t  marginal 
stability are necessarily three-dimensional and the Taylor-Proudman theorem 
and its analogue in hydromagnetics are no’longer valid. When the Lorentz forces 
dominate the Coriolis forces, the results obtained are similar to those for the 
magnetic non-rotating case at leading order. 

The most unstable mode is identified for all relations T = KQa, where K and 
CL are positive constants, taking into account both time-dependent and time- 
independent motions. 

Various types of boundary layers developing on different boundaries are also 
examined. 

1. Introduction 
‘ BBnard layer’ is a term used to  describe a layer of viscous fluid, of thickness 

d ,  contained between two horizontal planes when an  adverse temperature 
gradient ,!? is applied across it. Since BBnard’s famous experiments in 1900, 
considerable work has been reported on the BBnard layer. I n  1916, Rayleigh 
gave the first mathematical formulation of the linear stability of the BBnard 
layer to convective motions of infinitesimal amplitude, using the Boussinesq 
approximation. At the onset of instability, these convective motions can be of 
two types. If they are independent of time, it is usually said that the principle 
of exchange of stabilities is valid. If, however, instability manifests itself in the 
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form of oscillatory (with respect to time) motions, we have overstability. A 
review of all the work done on the BBnard layer, including the effects of a uniform 
magnetic field B, or a uniform angular velocity S2 antiparallel to the gravita- 
tional force, can be found in Chandrasekhar (1961) and in Weiss (1964). 

The simultaneous action of rotation and a uniform magnetic field on the 
BBnard layer was first studied by Chandrasekhar (1954), for the case when the 
bounding planes are free. The parameters characterizing the flow are the Prandtl 
number p ,  the magnetic Prandtl number p,,&, the Chandrasekhar number Q ,  
the Taylor number T and the Rayleigh number R. They are defined by 

p = V / K ,  prn = v /r ,  Q = d 2B2/,upvq = N 2 ,  T = 4d 2C22/v2, R = g?i/?d4/VK, 

(1.1) 

where v is the kinematic viscosity, K the thermal diffusivity, ,u the magnetic 
permeability, p the mean density, 7 ( = l/,uu,, ue being the electric conductivity) 
the magnetic diffusivity, g the gravitational acceleration, the coefficient of 
thermal expansion and B and Q are the magnitudes of B, and S2, respectively. 
In (1  . l ) ,  M is the usual Hartmann number. The problem of the magnetic rotating 
BBnard layer is one of the few cases of interaction of a field, rotation and adverse 
temperature gradient amenable to exact treatment. Furthermore, this inter- 
action is relevant to theories of convective motions in the earth’s core and plane- 
tary interiors where these three ingredients are known to exist. In turn, con- 
vection may drive the geomagnetic dynamo which maintains the earth’s magnetic 
field (Soward 1974). 

In contrast to the inhibiting effects on the layer of a uniform magnetic field 
or uniform rotation acting separately, the simultaneous action of these fields 
facilitates convection (Eltayeb & Roberts 1970). Eltayeb (1972a, hereafter 
referred to as I) examined the linear stability of the hydromagnetic rotating 
layer when the principle of exchange of stabilities is valid, for different types of 
boundaries. I n  I, four different models, characterized by the directions of the 
angular velocity and magnetic field relative to that of gravity, were discussed. 
For each model, the critical mode was located for all relations T = T ( Q )  in the 
double limit T ,  Q +a. 

The four models studied here, which are the same as those considered in I, 
are defined by 

(I) B, vertical, S2 vertical, 
(11) B, horizontal, S2 vertical, 

(111) 
(IV) B, vertical, S2 horizontal. 
We shall extend the discussion of I to include the possibility of overstability 

for non-zero values of the magnetic Prandtl number pm. We should emphasize 
that the present work also applies in the double limit Q, T +a, although models 
I1 and I11 include cases when exact solutions exist for all values of T and Q. 
In  model IV, the marginal state has the form of a roll parallel to Q and the 
results for the non-rotating magnetic layer apply (see Gibson 1966). We shall 
not pursue this model any further. I n  the other models, it is found that the in- 
finity of relations T = T(Q)  may conveniently be divided into three distinct 

B, horizontal, S2 horizontal with an angle q5 between them, 
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cases. When the Coriolis forces dominate the Lorentz forces, the critical mode, 
according to the linear stability theory, is similar to that obtained in the absence 
of the magnetic field, to leading order. In this case, the critical Rayleigh number 
R, varies as the two-thirds power of the Taylor number and the tessellated cell 
pattern is elongated in the vertical direction. Another case arises when the 
Lorentz forces dominate the Coriolis forces, resulting in a critical mode identical 
to that obtained in the absence of rotation. Here R, varies like Q and again the 
cell pattern prevalent at  marginal stability is elongated in the vertical direction. 
The third case occurs when the Coriolis and Lorentz forces are comparable. In  
this situation, the critical Rayleigh number R, varies as the larger of the quan- 
tities T/Q and Ti; the cell pattern obtained has dimensions of the order of the 
thickness of the layer. 

For model I, in which the angular velocity and magnetic field are both vertical, 
the above results are obtained for all types of boundaries. For models I1 and 
111, however, we only consider the case of perfectly conducting boundaries. 

The imposition of the condition Q, T -+a naturally leads to the development 
of boundary layers. The nature of these boundary layers depends on the relation 
between T and &, on the relative directions of the relevant forces and on the 
dimensions of the prevailing cell pattern. For example, in model I, we find that 
Hartmann layers develop on all types of boundary when the Lorentz forces are 
dominant, otherwise Ekman layers are present; in model 11, Ekman layers are 
always present, while model I11 is associated with Stewartson layers. Other 
diffusion layers of various types are also examined. 

In $2, the basic equations and boundary conditions of the problem are set 
out; in $3, we examine model I; in $4, we discuss model 11, while $ 5  is devoted 
to model 111. In $6, we survey the similarities and differences between the 
different models considered. 

2. The basic equations, boundary conditions and notation 
Consider a BBnard layer of electrically conducting fluid rotating with uniform 

angular velocity a. Take a Cartesian co-ordinate system rotating with the fluid 
layer with origin 0 half-way between the top and bottom planes, z axis vertically 
upwards and x and y axes in any two perpendicular horizontal directions. All 
quantities in this paper are measured in this rotating frame. 

When the Bousinnesq approximation is applicable, the equations of the 
problem (see I) admit a steady solution in which heat is conducted uniformly 
from the lower plane to the upper plane in the presence of a uniform magnetic 
field B,. The equations governing small perturbations of this solution are 
given in I. If we express each variable X as a normal mode of the form 

X ( x ,  y, x ,  t )  = X ( z )  exp i ( k  + Zy + d), (2.1) 

the basic equations of the problem can be written in dimensionless form as 

Lc = TJ(igp,,, - '7') (0. V )  W ,  

Lf[ = T i ( S . V ) ( h . V )  W ,  
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(iap,-V2)b = ( B . V )  W ,  (2.4) 
{(ia13-V2)V2L2+T(ia131n-V2)2(S1.V)2} w = Ba2(iap,,&-V2)LwI (2.5) 

and a2 = k3 + 12,  D = a/&, V2 = D2 - a2. (2.7) 

A 

where L = (iapm - V2) (ia - V2) - &(B . V)' (2.6) 

Here 6 and fi are unit vectors in the directions of B, and B, respectively. 
TV, b, c and 6 are, respectively, the vertical components of the velocity U, the 
magnetic field b, the electric current J ( = curl h/p) and the vorticity ( = curlu); 
B is the perturbation in temperature. p ,  pm, R, T and Q have already been defined 
in the introduction. From now onwards, we shall assume that all the variables 
are functions of z only and suppress the exponential dependence. 

Eqmtions (2.2)-(2.7) must be solved subject to certain boundary conditions. 
We shall always assume that the lower and upper boundaries (now located at 
z = -t 4) are of the same nature. As was shown in I, the thermal and dynamic 
boundary conditions are 

O =  W = D 2 1 . V = D c = 0  at z =  +-t (2.8) 

8 =  W = D l V = c = O  a t  z =  + 4  (2.9) 

if the boundaries are free (no tangential stress), and 

when the boundaries are rigid. 
The magnetic boundary conditions (cf. Roberts 1967, chap. 1)  are, in general, 

the continuity of n A E, n. b and n A b/p, where E is the electric field and n 
is a unit vector normal to the boundary. Although these constitute six conditions, 
it can be shown that they a,re equivalent to only two boundary condit'ions (see 
Eltayeb 1972 b,  chap. 2). Furthermore, the boundary conditions obtained by 
Eltsyeb can be simplified further by using equation (2.4) abovel to get 

D b + y b = p ( D [ + h , [ ) + p m y [ = O  a t  z =  &+, (2.10) 

where y2 = a2+iap, r, = vpu;. (2.11) 

Here a: is the electrical conductivity of the boundary and h, is the cosine of the 
angle B, makes with the z axis. We have assumed that the magnetic permeability 
of the boundary is the same as that of the layer. It is worth noting that the first 
condition in (2.10) is the same as that used by Gibson (1  966). The second condition 
is automatically satisfied by Gibson's solutions since ( and 6 vanish identically 
in the absence of rotation. I n  the treatment by Chandrasekhar the second condi- 
tion is satisfied in the special cases considered while the first is violated for solu- 
t)ions in which p,n $. 0. 

Because of the complexity of the problem, we shall find it useful to introduce 
a notation to be adopted in all the models. The boundary conditions examined 
here are of one of the following types. 

( A )  Free boundaries with finite electrical conductivity, for which 

W = B  = D2W = 0 6  = A, = A, = 0 a t  z = ki. (2.12) 

t The exact details of the derivation of (2.10) are available from the author or the 
.JFM Editorial Office, DAMTP, Silver Street, Cambridge CB3 9EW. 
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( B )  Free, electrically insulating boundaries, for which 

at W = 8 = DZW = D< = Db f a b  = 6 = 0 z = f 9. (2.13) 

(C') Free, perfectly conducting boundaries, for which 

W = 8 = D 2 W = D < = b = A , = 0  a t  z =  fh. (2.14) 

( D )  Rigid boundaries with finite electrical conductivity, for which 

W = O = D W = < = A , = A , = O  a t  z =  k4. (2.15) 

( E )  Rigid insulating boundaries, for which 

W = 8 = DW = 5 = D b f a b  = [ = 0 a t  z = +*. (2.16) 

(F) Rigid, perfectly conducting boundaries, for which 

W = 8 = D W = D g = b = D ( = O  a t  x =  fi. (2.17) 

Here A, and A, denote the expressions in (2.1 l) ,  respectively, A, = DC f hl< and 
A4 is obtained from A, by putting < = 0. 

Equations (2.2)-(2.7) together with the appropriate boundary conditions 
pose a double eigenvalue problem for R and u. For each pair of wavenumbers 
k and I ,  these equations possess a non-trivial solution satisfying the relevant 
boundary conditions if R and u take certain values which depend on T, Q, p 
and pnr. Since the method of locating the minimum Rsyleigh number was dis- 
cussed in I, we shall restrict ourselves here to a few points. For fixed values of 
T and Q, and provided that p and P , , ~  satisfy a specified relation, a discrete set 
of solutions W, exists and each solution is characterized by a Rayleigh number 
R@)(k, I, a). We first find the solution with the smallest Rayleigh number 
R(O)(lc, 1, u) and minimize the Rayleigh number for this solution over all possible 
values of k and 1 for which u2 is positive. The critical mode, according to the 
linear theory, is then defined by this minimum Rayleigh number R, and the 
corresponding values k,, 1, and a, of k, I and c. To find the critical mode at every 
point of the T, Q plane where T and Q are large, i t  is found that if we assume the 

(2.18) 
relation T = K@, 

where K and a are positive constants, then the range of a can conveniently be 
divided into three main regions. I n  general, these regions are where (i) magnetic 
effects dominate, (ii) magnetic and rotational effects are comparable and (iii) 
rotational effects dominate. We shall always use these small roman numbers 
when we refer to them. The notation is therefore similar to that in I except for 
the classification of the types of boundary under consideration. This disagreement 
in notation is due to the fact that boundaries of finite conductivity were not 
discussed in I. 

A useful property of (2.2)-(2.7) and the associated boundary conditions, for 
the models considered here, is that the set of solutions falls into two uncoupled 
groups: even and odd solutions. This allows us to consider the half-interval 
0 < x < +. When steady convection was discussed in I it was found that although 
the even-mode solution gave the critical mode in most situations, the odd mode 
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was preferred in some cases. I n  the case of overstability, however, we find that 
the even mode is always the easiest to excite. 

All six types of boundaries A-F are examined for model I .  I n  the analysis 
below, however, we shall only deal with A ,  B and C in detail and indicate the 
differences with a rigid boundary, if any, a t  the end of the corresponding free- 
boundary treatment. The critical modes for free and rigid boundaries of the 
same conductivity are always the same as can be seen in table 1. In models I1 
and 111, only types C and F are examined. I n  t,he text, only type C is discussed 
but both C and F are included in table 2. The cases (iii) of rotational dominance 
in both models I and I1 are included in tables 1 and 2 for comparison purposes. 
The critical modes here are, to leading order, identical with those in the absence 
of the magnetic field (see Chandrasekhar 1961, chap. 3). 

The eigenfunctions of all the models considered, in most of the cases, have a 
z dependence whose argument is proportional to m. We thus find it convenient 
to introduce the primed quantities 

and drop the primes from now onwards. 
In table 1 we summarize the results for all the cases considered when 

p <P,,, < 1. 

This particular situation is chosen since the modes preferred are overstable in 
most of the models. For other values of p and p,!, the reader may consult the 
relevant section entered in the last column. I n  table 2, the different boundary 
layers present are given and their significance in adjusting the mainstream 
solutions is indicated by specifying the quantities they affect. 

3. Model I 

solut,ion of (2.2)-(2.5) is then 
This model is defined by taking 6 and 8 to be parallel to the z axis. The even 

where the A (j  = 1, . . ., 6) are constants and the 9.5 (j = 1, . . ., 6) are the roots of' 

(3.2) I ( i ~ p  + h) + Tq2(igp,, + h)'] = R a ' ( i ~ p ,  + h)  8, 
s = (iC7pn1+h) (ig+h)+&qZ, h = d - k q ' .  

Since the expression (3.1) describes the full solution of the system, the other 
variables 8, b ,  6 and 6 arc particular solutions of (2.2)-(2.5) (see Eltayeb 19723, 
chap, 6). When we find these particular solutions and apply the boundary condi- 
tions, we obtain six linear homogeneous equations for the constants 

These equations possess a non-trivial solution for the A j  if and only if the 
determinant of their coefficients vanishes. When we set this determinant equal 
to zero, we obtain the characteristic equation for R and IT. 

We shall now consider the different types of boundaries. 

A j  (j = 1, ..., 6). 
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( A )  Free boundaries with Jinite conductivity 

Here the range of a, see (2.18), can be divided into the three intervals (i) a < z ,  
(ii) < a < 3 and (iii) a 2 3. We shall consider these cases individually. 

Case (i). a < 2 or more precisely T < T,, where 

T: = 4- i47pL( i  +p)' (1 + ~ m ) ~  Q5/27?i2(pm+p) ( p m - ~ ) ~  (1  - p J 4 .  (3.3) 

The critical mode here is the same as in the magnetic case treated by Gibson 
(1966),  to leading order. We include the results here for comparison reasons: 

] (3.4) 
Rc = P 2 ( 1  + ~ m )  Q/PL(' + P ) ,  

u24 - 4 8 2 

4 = (Pm-P) Q/Ph(1 + P ) ,  Pm > P, 
c - P P)ni(Prn-P) Q5/?i2(1 +prn14 (1  +pI5 (pm+pI4* 

Tz = [ 1 6 2 P 8 ( p , - P ) / E , 7 ~ ~ ~ 2 ( P  +P,~)~I '  Q2, 

Case (ii, a).  2 < a 6 2. This case is defined by Tl < T Q T,, where 

(3.5) 

Tl is as before while E, is defined by equation (3.14) below. The critical mode is 
obtained by assuming the orders of magnitude 

R = O(Q),  13 = O(Qa2/T) ,  a2 < cr (3.6) 

and using them to solve (3.2) for the qj 's. Once these have been found, we sub- 
stitute them into the characteristic equation, again making use of the orders 
of magnitude (3.6),  to find that, to  leading order, 

The mainstream solution is then 
w = cos7rz. 

( 3 . i )  

Before we proceed to the next case, we shall analyse the results obtained here 
and compare them with case (i) above. I n  case (i) the solution represents con- 
vective motions in a fluid layer composed of a mainstream solution characterized 
by the roots q1 and q2 of (3.2) and three boundary layers whose thicknesses are 
related to  q3, q4 and q5 (and q6). The only difference between case (i) and the 
purely magnetic case (Gibson 1966) is that  here the mainstream is governed by a 
fourth-order equation instead of a second-order equation and a double Hartmann 
layer replaces the single Hartmann layer. 

I n  case (ii, a) ,  the situation is different owing to  the Coriolis forces being 
potent. It is interesting to examine the evolution of the boundary layers and the 
mainstream solution as the Coriolis forces increase. By applying the orders of 
magnitude (3.6) to (2.6),  we find that the mainstream solution, taking D = O ( l ) ,  
obeys the fourth-order differential equation 

p(a2Q2D2+pLa2T) D2W = Rpl,lQD21V. (3.9) 
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This equation represents a hydromagnetic gravity wave in a rotating inviscid 
fluid of zero thermal and magnetic diffusivities. This means that all forms of 
diffusion are absent from the main part of the layer. 

Alternatively, the mainstream solution can be seen not to involve any form 
of diffusion by considering the thermal time scale of the critical mode, The 
thermal time scale rK of the mainstream solution is of order L/K,  where L = Sd/a, 
is the width of a cell. The period of oscillation 7,, is of order 2d 2/vuc. Here a, and 
u, are given by (3.7). It is readily seen that 7K 9 r,,. The period of oscillation is 
thus too short for the temperature differences to diffuse out during a cycle. If 
the orders of magnitude of v, K and 7 are the same, the magnetic and viscous 
diffusion times are of the same order as the thermal diffusion time. 

The structure of the boundary layer in case (ii, a )  is similar to that in case (i) 
except that the double Hartmann layer is now a Hartmann-Ekman layer (see I). 

Case (ii, b) .  2 < a < 3. The analysis in this case applies for T2 < T < T3, where 

T3 = 27p4Q3/32(1 + p )  Ez, E, = 4.2176. (3.10) 

Here the search for the orders of magnitude of R, (T and a for the critical mode 

R = O(T/&), a = 0 ( 1 ) ,  (T < O(1). (3.11) leads to 

Employing these orders of magnitude in the characteristic equation, we find 
that the expression for R gives R-t R, as a+O. When (T = 0, however, the 
system (2.2)-(2.7) factorizes into a tenth-order equation and a second-order 
equation for b. The solution is then that obtained for steady convection. Since 
this case of finite electrical conductivity was not discussed in I, we shall examine 
it here. Application of the relevant boundary conditions to the tenth-order 
system (neglecting the condition A, = 0) gives the characteristic equation 

tan ( 4 4 2 ) / P ;  = -tan & 3 ) / q k  (3.12) 

where q2 and q3 are the roots of 

(q2+a2)2 = E2a2, E2 = RQ/T. (3.13) 

Equations (3.12) and (3.13) are solved numerically to obtain 

E, = 4.217, a, = 2-328. (3.14) 

The critical mode here is characterized by a sixth-order mainstream and one 
boundary layer. The mainstream solution is 

W = 1 + 0.6583 cos (6.5942) + 0.0012 cash (12.842). (3.15) 

The boundary layer is the steady Ekman layer discussed in 0 3 of I. 
The marginal state (3.14) has a wavenumber of the same order of magnitude 

as the thickness of the layer. The significance of this result is that the motions 
at  marginal stability are three-dimensional. The Taylor-Proudman theorem 
and its analogue in hydromagnetics (see, for example, Hide & Roberts 1962) 
are no longer true. In  the interior of the layer a balance is struck between the 
Lorentz, Coriolis and pressure forces while viscous dissipation is confined to 
thin layers on the boundaries. In contrast to the previous cases, the mainstream 
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here is governed by an equation satisfied by a hydromagnetic gravity wave in 
a rotating, inviscid, electrically conducting fluid of non-vanishing thermal 
diffusivity. Such a wave is normally attenuated, a fact which means that cr is 
generally complex and not purely real. 

We note that these results are in good agreement with the experimental work 
of Nagakawa (reported in Chandrasekhar 1961, chap. 5). By keeping the angular 
velocity constant (T - 7 x lo5) and increasing the strength of the magnetic 
field, he found a sudden enlargement of the cells at marginal stability when Q 
reached a certain value ( - 6 x 10,). 

When the boundaries are rigid ( D ) ,  the above results for the critical modes 
hold good. The quantities adjusted by the boundary layers are shown in table 2 .  

(B)  Free insulating boundaries 
This type of boundary needs to be examined separately because the limit p 3 0 
is singular in the sense that, if we let 133 0 in the critical modes obtained for ( A )  
above, we shall not get the critical modes for the case 13 = 0. 

Case (i). a < s, or more precisely T < TI, where 

Tio = 4p1'( 1 + P ~ ) ~ ~  (pm + 2)2  Q l l / ( ~ ) ~  (1 + P ) ~ O  (pm -23)'' b m + p ) p L .  (3.16) 

For this case application of the boundary conditions to the solution (3.1) above 
yields a critical mode in which R, and a, are the same as in ( A ,  i) above but the 
wavenumber is different: 

= P 2 ( P m + 2 ) Q / 2 ( 1 + ~ ) ( 1 + P m )  ( P ~ + P ) *  (3.17) 

Case (ii, a) .  +$ < a < 2. This case is found to consist of two subcases. If 
TI < T < T12, where 

T2 12 - - P 2 (Pm-P)2(l-~m)4Q3/~2m(1+~23)4(11m+~)5, (3.18) 

the critical mode possesses the Rc and a, given in (3.4) but has a different wave- 
number : 

4' = ~ P ~ P ~ ( P ~ - P ) ~ T ~ Q / ( ~ + P ~ ) ~ ( P ~ + P ) ~ ( ~  +PI. (3.19) 

If, however, TI, < T < T,, where 

(3.20) 

then R, and a, are identical to those in (3.7) but the critical wavenumber is 
given by 

(Pm + P ) ~  T + (Pm -P I  (Pk- 1) Q -4 (3.21) 

The main features of these solutions resemble those of the corresponding case 
in ( A )  above. It may be noted, however, that the expression for q2 vanishes 
when p m  = 1. In this situation an alternative expression giving T,, = O(@) is 
obtainable. The physical significance of this apparent singularity in the range of 
pm, which we shall meet again later in model 111, is not clear. 

= [ p2Q2 Pm(Pm + P ) ~  T I .  
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Case (ii, b). 2 6 01 < 3. When T, < T < 27p4Q3/32(1 + p ) ,  where T, is given by 
(3.20) above, the critical mode is steady and the results for the corresponding 
case in I apply. 

(C)  Free, perfectly conducting boundaries 

The critical modes are qualitatively similar to t,he previous types but are in- 
cluded to  allow easy comparison with models I1 and 111, where only this type 
of boundary is examined. 

Case (i). The critical mode is similar to that for the corresponding case with 
j~ = 0 except that the expression on the right of (3.17) should be multiplied by 
a factor of 8. 

Case (ii) a) .  The marginal state is again similar to  that for insulating boundaries. 
The expression on the right of (3.1 9 )  is multiplied by a factor of 8 while a, in 
(3.21) remains as i t  is. 

Case (ii, 6 ) .  The results here are identical to those for the corresponding case 
for boundaries of type A above. 

To summarize the results for this model, the most unstable mode, according 
to the linear theory, is overstable ifp, > p in both cases (i) and (ii, a) .  I f p ,  < p ,  
however, the steady modes of I are preferred. I n  case (ii, b) ,  the most unstable 
mode is always time independent whatever the relative magnitude of p and pTl,. 
I n  case (iii) the results of I show that overstability is preferred if p < ($)* and 
steady convection is preferred otherwise. 

4. Model I1 
This model is defined by taking 0 parallel to the x axis and 6 parallel to  the 

x axis. I n  this model, we shall restrict the analysis to the case of perfectly con- 
ducting boundaries. For type C an exact solution exists. I n  the case P of rigid 
boundaries the same solution applies in the mainstream but boundary layers 
are present. 

Consider boundaries of type C. Then the relevant boundary conditions can 
be shown t o  require that W and all its even derivatives (with respect to  x )  vanish. 
The exact (even) solution giving the smallest Rayleigh number is then 

w = cos7lz. (4.1) 

If we substitute this solution in (2.5),  properly adjusted for this model, and 
separate real and imaginary parts we get the following expression for R: 

where G! = Qk2, 2, = 1 +a2 and az is a root o f  the equation 
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In this model, we find it convenient to divide the range of T and Q into the 
t'hree intervals (i) a < 2,  (ii) 2 < a < 3 and (iii) a 2 3. Case (iii) will not be treated 
here since the results for the corresponding case in I apply. 

Case (i). a < 2 ,  or more precisely T 6 4p2Q2/3(p, + P ) ~ .  Here the critical mode 
is associated with the orders of magnitude 

R = O ( T J ) ,  = 0(1), ~d = 0(1), G2 = O(T). (4.4) 

If we define the quantities R,, T,, 71 and q by the relations 

i t  can be shown, without going into details, that in terms of these quantities 
the problem becomes identical to that of steady convection discussed in I (cf. 
equation (4.8) in I) plus an expression for cr. The results of I then apply, with 
proper adjustment, and the expression for a, is found to be 

p,fcr,2 = q2 - 2 .  (4.6) 

Equation (4.6) shows that overstability is possible only if q2 > 2 .  If we compare 
the critical Rayleigh numbers for this case and that of steady convection, we 
find that, for all values of q > 2 ,  this overstable mode is preferred to steady 
convection. For values of q 6 42 ,  however, steady convection is preferred since 
the only overstable mode is a roll parallel to B, and this has a Rayleigh number 
( = O(Tg)) whichistoo high. When42 < q < 2 ,  both modes (steady and oscillatory) 
are present and have a critical Rayleigh number of order T i .  Since $q(q+ 1) is 
greater than unity in this last case, it must be concluded that steady convection 
is the easier to excite. 

Case (ii). 2 6 a 6 3. This mode is defined by T] 3 $ but T < 54p4Q3/(1 + p ) .  
The critical mode here is identical to that for steady convection dealt with in I 
($4)  if we use the quantities defined in (4.5) above, while crz is given by 

p:,cr: = (1+xc)2x; ' (2p-2-x , ) ,  x ,  = k,2. (4.7) 

Although it was shown that equations (4.13) and (4.14) of I yield a critical mode 
for the whole range of this case, the condition cr,2 > 0 imposes a constraint on 
these equations in the case of overstability. Since x,  N T$ as 7-+00, we see that 
for every value of q there exists a value 7q of 71 such that overstable motions are 
non-existent if 71 > 7q. In figure 1,  we illustrate this result for some values of q .  
The curve labelled C is the steady mode discussed in I. 

For each value of 71, it is found that, even when overstability is present, it  
has a critical Rayleigh number greater than that of the steady mode if q is less 
than a certain value ij, which depends on 71. We can therefore divide the 7 1 , q  
plane into three distinct regions (see figure 2 ) .  In region I overstability is not 
possible. In  region I1 overstable motions are present but not preferred, while in 
region I11 overstability is the easier to excite. 

To locate the preferred mode here, we use figure 2 .  Starting with a prescribed 
q ,  we locate the value T~ of 71 on the line dividing regions I1 and I11 which 
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'r 
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RC 

FIGURE 1. The variation of the critical Rayleigh number Rc with T~ (= T1/&*) for different 
values of q ( = p,/p). For comparison, the steady-convection curve C is also included. 

8 

6 

4 

2 

0 5 10 15 20 25 

FIGURE 2. To illustrate the regions in the T ~ ,  q plane where overstability is preferred. In 
region I, overstable motions do not occur; in region 11, overstability is present but steady 
convection is easier to excite, while overstability is preferred in region 111. For each q, 
T, is determined by T, = Ta/Q2, where r, = r when the curve for that value of q meets 
the curve C.  

corresponds to q. Then, for this value of q, overstability is preferred if 71 < T~ 

and steady convection is preferred if r1 2 rQ. 
In the case of rigid, perfectly conducting boundaries, the same critical modes 

are present. The solution (4.1) holds in the interior of the layer but an Ekman 
layer is present on the boundaries. 
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5. Model III 
In  this model, we take 6 along the x axis and d in the x, y plane at  an angle 

qi to B. The treatment here is for perfectly conducting boundaries only. Whether 
the boundaries are free or rigid, we find that the range of T can conveniently be 
divided into two intervals: (i) a < 2 and (ii) a 2 2. The critical modes for rigid 
and free boundaries are found to be the same and hence the matching of cases 
(i) and (ii) is also the same. Here we shall deal with the mainstream solution only. 
If any information regarding the boundary layers is required, the reader may 
consult table 2. 

Case (i). a < 2. The precise matching values of this case with the next will be 
dealt with at  the end of the discussion of case (ii). 

If we use the quantities R,, Tl and 7, defined in (4.5) above, the problem 
becomes identical to that for the steady mode discussed in I if we replace R, T 
and 7 by R,, T, and 71 respectively. The expression for CT, is then 

A 

For small values of 7, (i.e. 71 4 l), x, takes the value 8. Equation (5.1) then 
shows that overstability is present if q2 > 2. A comparison of the steady and 
oscillatory modes shows that overstable motions are preferred for q > 2 while 
steady convection is preferred if q < 2, although overstability is present for 
4 2  < q < 2. This situation is akin to the corresponding case in model 11. 

As T~ increases (i.e. T~ = O(l)), the expression for R, becomes 

R, = W C )  &, (5 .2)  

where R, is defined in (4.5) above and h(xJ is a function of xc which depends on 
the direction cosines of fi and is given in equation (5.13) of I. The equation for 
xc is also the same as in I. In  figure 3, we illustrate the behaviour of h(xc) and 7, 
as functions of x, in the relevant interval 0 < x < 4. We shall refer to this mode 
as the ‘old oblique mode’ since it is similar to the steady mode of I. 

Case (ii). a 2 2. When 71 1, the mode preferred depends on the relative 
magnitude of p and pm. In  fact it  is always one of two modes. 

The first mode is a roll parallel to the angular velocity vector S2. We shall 
call this ‘the magnetic roll’. Here the effect of the Coriolis force is absent. The 
basic equations then reduce to those for a BBnard layer in the presence of a 
horizontal magnetic field. The variables 6 and y vanish identically and the 
system of equations reduces to an eighth-order system. By applying the relevant 
boundary conditions, we find that an ezact solution (given in (4.1) above) exists. 
The minimization procedure then leads to 

where 
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FIGURE 3. To illustrate the behaviour of the functions h(s) and ~ ~ ( 2 ) .  The subscripts ( 4 ,  

b and c indicate values for g = 0, 0.5 and 0.8 respectively. 

The second mode is another oblique mode, referred to later as 'the modified 
oblique mode', and has no parallel in the steady-convection treatment of I. 
This mode is arrived at using the orders of magnitude 

a = O(&-A), R = O(Q) ,  cr = O(QQ),  sin ($ + 9) = 0(&-5), (5 .5 )  

where tan 21. = k/l .  The equation for the mainstream is of second order and it is 
found to obey the boundary condition on 0, giving a solution identical to that 
in (4.1) above. The critical mode is then defined by 

(5.6) 

where a2 = (pTn-p )  ( p ~ - p ) / 2 p 2 ( p , , , + p ) ,  provided that P < mill ( P , , , P ~  
We shall now discuss tJhe matching of cases (i) and (ii). When r1 = 0 ( 1 ) ,  the 

old oblique mode, when it  exists, has a critical Rayleigh number which increases 
with T ~ .  This can be deduced from the behaviour of h(xc) and 71 when plotted 
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against xc for different values of the angle q5 (figure 3). When $ > 60", each of 
the two functions has two branches which meet a t  a certain value xb (say) of x,, 
depending on $. This means that, for each value of 71 Q r l (xb ) ,  there are two 
positive roots 5 and 2 of x, such that 0 < z Q xb < P < 3, and each of these 
values corresponds to a value of Rlc. Also, the root 5 yields an overstable mode 
only if q 2  > 4 = (1 -Z)-1 while the value P gives an overstable mode only if 
q2 > p = (1  - P ) - l .  Since P > 2, we clearly see that ij > 4. This shows that for 
ij < q 2  Q q there is only one overstable mode and it corresponds to 5. When 
q z  > 9, however, the two oscillatory modes corresponding to P and 5 occur. A 
closer examination of these modes shows that the root 5 corresponds to the 
smaller critical Rayleigh number. If $ Q 60", h and 71 decrease steadily, as 2, 
is increased from zero, until they approach zero when x, tends to 4j from beldw. 
Hence, for each 71 less than a certain value r, (say), there exists one root x' 
which gives a critical oscillatory mode provided that q 2  > 1/( 1 - 2'). We therefore 
conclude that the old oblique mode is possible only if 71 6 71(xb) if q5 > 60" and 
r, < r, if $ Q 60°, where 71(q,) and 7, are the maximum points on the correspond- 
ing 71 curves. 

To determine the critical mode globally, we find that there are three cases to 
consider: (a)  p m  < p ,  (b)  p < p m  < 2p and ( c )  p m  2 2p. 

(a )  I n  this situation, the most unstable modes are the steady convection 
modes discussed in I. 

(b)  When p < pm < 2p, the critical mode is the steady mode of I for all 
r1 5 r+. When r1 = 7+, the steady oblique mode matches with the modified 
oblique mode if p,, 2 1 and with the magnetic roll if pPm < 1. A sample of 
matching quantities is given in tables 3 and 4 .  

( c )  If p m  2 2p (i.e. q < 2), the preferred mode is overstable for all values of T ~ .  

For small values of rl, the old oblique mode of case (i) above is preferred. This 
mode matches with the modified oblique mode a t  71 = r# if pm 2 1. The values 
of r6 are the same as those given in table 3 in I if q5 > 60" while 7# = f2( 1 -f2) 
if q5 Q 60". I f p m  < 1,  the old oblique mode matches with the magnetic roll. 

6. Concluding remarks 
The study of the four models defined in this paper has shown some character- 

istics of the coupling between the Coriolis and Lorentz forces. Consider a rotating 
BBnard layer. The critical mode has a large wavenumber (a, N T&), indicating 
that the motions are two-dimensional. Also the critical Rayleigh number I?,, 
which is the measure of the temperature gradient p, required for instability, 
varies as TS. This means that p, N Ff. If a magnetic field is introduced into the 
layer, the critical mode remains the same to leading order until the magnetic 
field reaches a certain value [T = O(Q3)],  when the wavenumber starts to de- 
crease. When T = O(Q2),  the critical Rayleigh number R, is drastically reduced 
to O(T4) and the wavenumber a becomes O( 1) .  The latter shows that the motions 
a t  marginal stability are three-dimensional while the former indicates that the 
critical temperature gradient /3, necessary for instability is greatly reduced 
and also that p, is independent of viscosity. 

I2 P L M  71 



178 1. A .  Eltayeb 

L7 ( = cos 4, 4 (= PJP) 
0.0 2.00 

1 *50 
1-09 

0-2 2.00 
1.50 
1.09 

0.8 2.00 
1.50 
1.09 

Td 
0.0047 
0.0130 
0.0437 

0.005 1 
0.0158 
0.0581 

0.0031 
0.01 11 
0.0666 

x@ 
0.468 
0.443 
0.375 

0.448 
0.412 
0.315 

0.395 
0.340 
0.195 

161 
20.1 
26.8 
39.2 

20.5 
27.5 
40.5 

13.1 
17.9 
27.5 

TABLE 3. The values of x, and ri/ when steady convection matches with 
the new oblique mode in tho case p, > 1 and p < p ,  < 2p 

P 
0.5 
0.31 
0.5 
0.3 

0.5 
0.31 
0.5 
0.3 

0.5 
0.31 
0.5 
0.3 

79 
0.0103 
0.0041 
0.0294 
0.0181 

0.0101 
0.0047 
0.0375 
0.0202 

0.0074 
0.0026 
0.0301 
0.0156 

"d 
0.450 
0.470 
0.405 
0.430 

0.425 
0.450 
0.360 
0.400 

0.360 
0.400 
0.205 
0.320 

I@l 
25.2 
19.7 
3 4 4  
29.7 

25.3 
19.9 
35.5 
29.1 

16.3 
12.7 
23.3 
19.4 

TABLE 4. The values of rl, xc and $ when the steady mode matches wit.11 
the magnetic roll in the case p, < 1 and p < p,, < 2p 

Although the results obtained for the different models are qualitatively 
similar, one can see disagreement when comparing the results quantitatively. 
For example, when T < Q2, the result,s of models I and IV differ from these of 
models I1 and I11 in that a balance is maintained between Lorentz and Coriolis 
forces in models I1 and I11 while the Lorentz forces dominate the Coriolis forces 
in the other two models. Furthermore, the critical mode of model I11 possesses 
non-zero helicity, which is known to be conducive to  hydromagnetic dynamo 
action (Moffatt 1970), whereas that of model I has zero helicity. 

It must be noted, however, that in more realistic models of physical significance 
(i.e. the earth), the situation is more complicated. I n  general, the magnetic field 
and gravity are not only inclined to  the axis of rotation but are also non-uniform. 
Nevertheless, we may expect these results to  be qualitatively applicable, 
realizing that model I1 may be representative of the polar regions while model I11 
may be representat,ive of an equatorial belt (Eltayeb & Kumar 1975). 
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